Cardiovascular System:

Physiology & Regulation
Blood flow

- Aorta
- Arteries
- Arterioles
- Capillaries
- Venules
- Veins
- Vena cava
Overview

• Branching from Aorta to capillaries; Convergence from capillaries to Vena Cava

• Blood Pressure & Velocity \propto to Area (cross sectional)
 - Velocity slows as area increases.
 - Pressure drops as area increases.
Effects of area & distance

- $F \propto \Delta P/R$
 - Increased Pressure = increased Flow
 - Increased Resistance = decreased Flow

- **Cardiovascular Pressure**
 - **Blood Pressure (BP); arterial**
 - $\Delta P = 65\text{mm Hg}$
 - **Capillary hydrostatic pressure (CHP)**
 - $\Delta P = 17\text{mm Hg}$
 - **Venous pressure; $\Delta P = 18\text{mm Hg}$**
Effects of diameter & distance

- \(F \propto \Delta P/R \)
 - Increased Resistance = decreased Flow

- Vascular Resistance
 - Vessel Length & Diameter
 - Longer vessel = more friction; Smaller diameter = more friction; more SA of vessel walls in contact with blood
 - Viscosity; \(R \) caused by interaction of suspended molecules & solutes (stuff sticking together)
 - Turbulence; irregular surfaces, high flow rates, changes in diameter.
BP changes with distance

- From arterioles to capillaries:
 - BP drops quickly
 - ΔP drops quickly
- Systolic & Diastolic
 - 120/80
- Pulse = difference
- MAP = mean
- Hypertension (140/90) leads to gradual enlargement of ventricle to compensate
Mechanisms of Capillary Exchange

1. Diffusion - *Concentration gradient*
 - Occurs rapidly with: short distances; steep gradients; small particles
 - Avenues of exchange: between endothelial cells & through fenestra; protein channels; cell membranes; major sinuses

2. Filtration - *Hydrostatic pressure*
 - Water and small solutes forced across capillary wall, leaving large solutes & proteins in blood
Capillary Exchange

• About 10 billion capillaries in the body
• Blood pressure (CHP)
 - Forces fluid (but few dissolved solutes) into interstitial space
• Osmotic pressure
 - Fluid (lacking dissolved blood proteins) moves back into capillaries along solute concentration gradient
CHP pushes H_2O & solutes OUT

- Large solutes stay in
- Small solutes pass between cells & through pores
Hydrostatic vs. Blood Pressure
Capillary exchange

1. Net movement of fluid out of the capillary into the interstitial space
 - Outward movement of fluid due to blood pressure

2. Inward movement of fluid due to osmosis

3. 1/10 volume to lymphatic capillaries
 - 9/10 volume returns to capillary

Blood flow
- Arterial end
- Venous end

Net movement of fluid into the capillary from the interstitial space
Acronyms

- Heart rate (HR)
- Blood Pressure (BP)
- Stroke Volume (SV)
- Medulla oblongata; brainstem (MO)
- Vasomotor Center (VaC)
- Cardiovascular Center (CaC)
- Vasomotor Tone (VaT)
Cardiovascular regulation

• Autoregulation
 - Local vasodilators and vasoconstrictors

• Neural mechanisms
 - Cardiovascular centers
 - Baroreceptors & chemoreceptors measure arterial pressure & dissolved gases

• Endocrine mechanisms
 - Hormones produce both short & long-term changes
Autoregulation: Local control

- **Sphincters** contract or dilate based on concentrations of:
 - **Nutrients** (AA, glucose, fatty acids)
 - **Dissolved gases** (O_2, CO_2 load, NO)
 - **Wastes** & pH altering ions (lactic acid, H^+, K^+)
 - **Inflammatory molecules** (histamine, NO)

- **Additional capillaries** infiltrate areas to satisfy increased energy demands.
Neural: Vasomotor

- **Controlled by neurons in Cardiovascular center (brainstem)**
 - **Vasoconstrictors**
 - Release NE; most peripheral blood vessels
 - Constitutively active = Vasomotor tone
 - **Vasodilators**
 - Release ACh; vessels servicing skeletal muscle & brain
- **Allows shunting of blood to/from major regions of body**
Neural: Baroreceptor Reflex

- Carotid sinus & aortic arch baroreceptors
- Increase stretch = increased AP frequency to CaC in MO
 - Stimulates parasymptathetic neurons
 - Inhibits sympathetic neurons
 - Collectively decreases CO & VaT
Summary
Chemoreceptor Reflex

- **Carotid & aortic bodies** have receptors
 - Communicate with MO
- **O₂ or pH drops, or CO₂ increases**
 - Increase AP frequency
 - **CaC & VaC decrease** parasympathetic stimulation & increases sympathetic stimulation of heart
 - Increase CO, VaT
 - Increase BP and blood flow to lungs = MORE O₂
Hormonal

• Adrenal Medullary
 - Mechanisms that increase sympathetic stimulation of heart & vessels, also stimulate adrenal medulla
 - Adrenal medulla releases epinephrine
 - Epinephrine increases HR, SV; causes vasoconstriction of blood vessels in skin & viscera; vasodilation of blood vessels in skeletal & cardiac muscle
Hormonal

- RAA pathway
- **Stimulus:** BP drops
 1. kidney secretes **Renin** which turns on **Angiotensin**
 2. Angiotensin increase vasoconstriction; **BP rises**
 3. Encourages adrenal medulla to produce **aldosterone**
 - Aldosterone increases Na⁺ and H₂O reclamation @ kidney; **BP rises**
 4. Stimulates secretion of **ADH**, stimulating H₂O reabsorption
 5. Stimulates “thirst” mechanism
Hormonal

- **Vasopressin (ADH) mechanism**
 - **Stimulus**: plasma solute concentration increases or BP decreases
 - **ADH** released from pituitary
 - **ADH** stimulates vasoconstriction & water reclamation at kidney; **BP rises**
• Pulmonary loop
 - Gas exchange
• Systemic loop
 - Nutrient delivery & waste removal